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In general, dissipative problems involve both frictional and fluctuation forces. As it turns out, solu-
tions of many of these problems are encompassed by the generalized quantum Langevin equation. Here,
we use this equation to obtain a general expression for the work done by the fluctuation force on a quan-
tum particle. At equilibrium, this work is necessary to balance the energy lost by the particle due to the

frictional force.

PACS number(s): 05.30.—d, 05.40.+j

Brownian motion is the epitome of dissipative prob-
lems and it is described most elegantly by Langevin’s
classical stochastic differential equation [1]. In recent
years, there has been widespread interest in dissipative
problems arising in a variety of areas in physics. As it
turns out, solutions of many of these problems are en-
compassed by a generalization of the Langevin equation
to encompass quantum, memory, and non-Markovian
effects, as well as arbitrary temperature and the presence
of an external potential ¥V(x). We refer to this as the gen-
eralized quantum Langevin equation (GLE):

mi+ [' drpt—t)x()+V(x)=F(1), (1)

where m and x denote the mass and coordinate of the
particle, respectively, and the dot denotes differentiation
with respect to time. Also V'(x)=dV(x)/dx is the nega-
tive of the time-independent external force. In addition,
the frictional (dissipative) term on the left side of the
equation is characterized by the memory function u(t)
while on the right side is the random (fluctuation or
noise) term F (t).

A detailed discussion of Eq. (1) appears in Ref. [2]. In
particular, it was pointed out that the GLE corresponds
to a macroscopic description of a quantum system in-
teracting with a quantum-mechanical heat bath and that
this description can be precisely formulated, using such
general principles as causality and the second law of ther-
modynamics. We also stressed that this is a model-
independent description. However, the GLE can be real-
ized with a simple and convenient model, viz., the
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independent-oscillator (I0) model [2].

The effect of an applied c-number force f(t) can be
taken into account simply by adding f (¢) to the right side
of Eq. (1). However, we take f(t) to be zero for the
present analysis since in Ref. [2] (Sec. III) we already cal-
culated the work done by f (z). Here, we concentrate on
the work done by the fluctuation force on the quantum
particle which is necessary to maintain equilibrium by
balancing the energy lost by the particle due to the fric-
tional force. In fact, very few discussion in the literature
discuss this aspect of the fluctuation force (the main em-
phasis being on the effect of the external force) and when
they do, the discussion is mainly within the framework of
the Markovian approximation. The latter implies the ab-
sence of “memory effects” or, equivalently, the choice of
p(t) to be proportional to 8(¢) so that the GLE given in
(1) reduces to the more usual Langevin equation. It is
our purpose here to present a very general approach
which will incorporate (a) non-Markovian effects, (b)
quantum effects, and (c) arbitrary temperatures. As we
will demonstrate, the GLE is an ideal way to tackle such
a problem for the simple reason that, by its nature, fluc-
tuation and dissipative effects are readily separated from
each other. In addition, we have at our disposal the very
useful knowledge and results (such as the fluctuation-
dissipation theorem) already developed in this general
area. This will enable us to obtain a very general result,
Eq. (12) below, for the work done by the fluctuation
force. This result is then applied both to the familiar case
of the Ohmic (Markovian) heat bath and to the case of a
blackbody radiation heat bath (which manifests both
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non-Markovian and quantum effects).

We turn now to the calculation of the expectation
value of the instantaneous power supplied by the fluctua-
tion force, Pg, say. Keeping in mind that we are working
with operators, we use a symmetrized form, viz.,

=L{u()F(t)+F(t(1)) , ()

where v(t)=x(?) is the particle velocity operator. It im-
mediately follows from Eq. (1) that

PF=—d~(%m5c2+ Vix))

.
First, we observe that the first term on the right side of
Eq. (3) must be zero because, for a stationary process, ex-
pectation values of time-dependent quantities must be in-
variant under time translation or, in other words, they
are constant. This may be seen mathematically by con-
sidering an arbitrary time-dependent operator A4 (1),
whose expectation value is given by

_drut—t') A x ()% (") +x (2% (1)) . 3)

TI‘[ —BHeth/ﬁA (O)e —th/ﬁ}
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(A())=

where B=(kT)", T being the temperature, and where
we have used the cyclic property of a product of opera-
tors under the trace. From Eq. (4), it is clear that
(A4(#)) is time independent for a canonical ensemble,
which proves our assertion above.

Secondly, to simplify the second term on the right side
of Eq. (3), we need to -calculate the velocity-
autocorrelation function. This requires a knowledge of
the generalized susceptibility a(w) which is equivalent to
knowing the solution to the GLE. This solution is readi-
ly obtained when ¥V (x)=0, corresponding to the original
Brownian motion problem. As shown by Ford, Lewis,
and O’Connell [3,4], a solution is also possible in the case
of an oscillator. Taking V(x)=1mwgx?, these authors

obtained [see Egs. (1)-(3) of Ref. [3]]

X(w)=alw)F(w) , (5)
where
a(@)=[—mo*+moi—iop(w)]” ", (6)

and the superposed tilde is used to denote the Fourier
transform. Thus X(w) is the Fourier transform of the
operator x (2):

Sc“(a))=f°°

dt x(t)e®" . (7)

Also, since u(t) is O for negative ¢, we have [see Ref. [2],
Egs. (4.9) and (2.4)]

po)= [ “dipne™ , Imo>0. (8)

For the same reason, the upper limit in the integral in
Eq. (1) may be replaced by + .
Next, we use the fluctuation-dissipation theorem [5-7]
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Cre (1 =)= L(x(D)x (£ +x(¢')x (1))

1 * ~ w(t—1")

=— doC, (w)e™ , 9)
27T — oo
where
C,.(0)=%Ima(w)coth(#iw /2kT) . (10)

It readily follows that the Fourier transform of the
velocity-autocorrelation functions is ©?C_ (w). Hence,
putting all this together, we obtain

P,;=fj°oo dt’,u(t—t’)i fmm do o*Cy(w)e @1

= [ oo Imalw)a(—o)coth(fio/2kT) . (11)

27 — o0
Noting that only the even part of the integrand in Eq.
(11) contributes and also noting [2,3] that fi( —w)* =fi(w)
and a( —w)*=alw), so that Ima(w) is an odd function of
o whereas Refi(w) is an even function of w, it follows that
we can write Pr(?) in the following convenient forms:

P
= 277-1 f da)a) a(w)Refi(w)coth kT
_ A e 2 _ fiw
A do o Ima(w)Refi(w)coth kT (12)
In addition, we note that Eq. (6) implies that
Ima(w)=o|a(w)]’Refi(w) , (13)

so that it is immediately clear that P > 0 always.
For example, in the case of classical Brownian motion
in an Ohmic heat bath at high temperature, for which

0y=0, Refi(w)=my, and kT >>%iw, we obtain, from Egs.
(12) and (6),

PFZ%m‘y ¥ dooImalw), (14)
with a(w)=[—maw(w+iy)] L. It follows that

Pr=kTy . (15)

In other words, the rate of work being done by the fluc-
tuation force is proportional to the dissipation. This is a
manifestation of the general principle that, at equilibri-
um, the energy lost by a particle due to dissipation is
compensated by the energy received from the fluctuation
force.

Next, we consider an example of a non-Markovian in-
teraction, viz., the case of a blackbody radiation heat
bath. This is more physical than the Ohmic case and it
has the merit that a universally accepted Hamiltonian
may be written down. In fact, we have shown, by use of a
series of unitary transformations, that the nonrelativistic
Hamiltonian of quantum electrodynamics in the dipole
approximation can be transformed into the IO Hamil-
tonian, with an associated GLE containing explicit and
exact values for the memory function and the random
force. In the case of the oscillator potential, this led, via
Eq. (6) and mass renormalization, to an expression [3,4]
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for the susceptibility a(w).
wy=0, we have [3,4]

Explicitly, in the case where

Ima(w)=1,/Mo (16)
and
Refilw)=Mw?/7,(0?*+7,2), (17)

where M is the renormalized (observable) electron mass
and 7, =2e%/3mc?=6.24X 10~ %s. It follows, using Egs.
(12), (16), and (17), that

# © >

==y
Y IR S

fiw
2kT

. (18)

— coth
e

This result is divergent. This may appear at first to be
surprising in view of the accuracy with which the calcula-
tion was carried out. The explanation lies in the use of
the dipole approximation. Such an approximation is val-
id for many calculations involving the interaction of a
nonrelativistic electron with the electromagnetic field
but, as in the case of Bethe’s nonrelativistic calculation of

the Lamb shift [8], it is not adequate when the calculation
involves the emission and reabsorption of virtual photons
(which is implicitly involved in the calculation of Pg). As
with Bethe [8], if we introduce a high-frequency cutoff,
®max SaY, then, for example, in the high-temperature lim-
it, we obtain

wmax 2
Pp= 2kT fo deo—2

™ P
2% -
= 2L o= 1 O] (19)

We conclude that, just as Au and Feinberg [9] went
beyond Bethe’s calculation [8] to include retardation
effects, the incorporation of retardation effects in the
blackbody radiation heat-bath problem is a desirable next
step.
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